Overview
Description
In this course, learn how to solve a real-world use case with machine learning and produce actionable results using Amazon SageMaker. This course teaches you how to use Amazon SageMaker to cover the different stages of the typical data science process, from analyzing and visualizing a data set, to preparing the data and feature engineering, down to the practical aspects of model building, training, tuning and deployment.
Intended Audience
This course is intended for:
- A technical audience at an intermediate level
Course Objectives
Using Amazon SageMaker, this course teaches you how to:
- Prepare a dataset for training.
- Train and evaluate a machine learning model.
- Automatically tune a machine learning model.
- Prepare a machine learning model for production.
- Think critically about machine learning model results.
Prerequisites
We recommend that attendees of this course have the following prerequisites:
- Working knowledge of a programming language
Delivery Method
This course is delivered through a mix of:
- Instructor-Led Training (ILT)
- Hands-On Labs